Gandhi, R. T., Lynch, J. B. & Del Rio, C. Gentle or reasonable Covid-19. N. Engl. J. Med. 383, 1757–1766 (2020).
Avila, J., Lengthy, B., Holladay, D. & Gottlieb, M. Thrombotic problems of COVID-19. Am. J. Emerg. Med. 39, 213–218 (2020).
Gao, Y. et al. Danger elements for extreme and critically sick COVID-19 sufferers: A assessment. Allergy 76, 428–455 (2021).
Fox, S. E. et al. Pulmonary and cardiac pathology in African American sufferers with COVID-19: An post-mortem sequence from New Orleans. Lancet Respir. Med. 8, 681–686 (2020).
Bryce, C. et al. Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 post-mortem expertise. Mod. Pathol. 34, 1456–1467 (2021).
Del Valle, D. M. et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 26, 1636–1643 (2020).
Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in extreme COVID-19. Nature 584, 463–469 (2020).
Liao, J., Wen, B. & Deng, X. Progress on function of cytokine storm in exacerbation of coronavirus illness 2019 (COVID-19): Overview. Chin. J. of Mobile Mole. Immunol. 36, 941–947 (2020).
Gustine, J. N. & Jones, D. Immunopathology of hyperinflammation in COVID-19. Am. J. Pathol. 191, 4–17 (2020).
Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives growth of COVID-19. Cell 181(1036–1045), e9 (2020).
Jenner, A. L. et al. COVID-19 digital affected person cohort suggests immune mechanisms driving illness outcomes. PLoS Pathog. 17, e1009753 (2021).
Mochan, E., Sego, T. J., Gaona, L., Rial, E. & Ermentrout, G. B. Compartmental mannequin suggests significance of innate immune response to COVID-19 an infection in rhesus macaques. Bull. Math. Biol. 83, 1–26 (2021).
Sadria, M. & Layton, A. T. Modeling within-host SARS-CoV-2 an infection dynamics and potential therapies. Viruses 13, 1141 (2021).
Kim, Ok. S. et al. A quantitative mannequin used to check within-host SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics supplies insights into the pathogenesis and remedy of SARS-CoV-2. PLoS Biol. 19, e3001128 (2021).
Cao, Y., Gao, W., Caro, L. & Stone, J. A. Immune‐viral dynamics modeling for SARS‐CoV‐2 drug growth. Clin. Trans. Sci. (2021).
Néant, N. et al. Modeling SARS-CoV-2 viral kinetics and affiliation with mortality in hospitalized sufferers from the French COVID cohort. Proceedings of the Nationwide Academy of Sciences 118 (2021).
Goyal, A., Cardozo-Ojeda, E. F. & Schiffer, J. T. Efficiency and timing of antiviral remedy as determinants of length of SARS-CoV-2 shedding and depth of inflammatory response. Sci. Adv. 6, eabc7112 (2020).
Carty, M., Man, C. & Bowie, A. G. Detection of viral infections by innate immunity. Biochem. Pharmacol. 183, 114316 (2020).
Zindel, J. & Kubes, P. DAMPs, PAMPs, and LAMPs in immunity and sterile irritation. Annu. Rev. Pathol. 15, 493–518 (2020).
Poljšak, B. & Milisav, I. Medical implications of mobile stress responses. Bosn. J. Primary Med. Sci. 12, 122 (2012).
Shen, H., Kreisel, D. & Goldstein, D. R. Processes of sterile irritation. J. Immunol. 191, 2857–2863 (2013).
Murao, A., Aziz, M., Wang, H., Brenner, M. & Wang, P. Launch mechanisms of main DAMPs. Apoptosis 26, 152–162 (2021).
Frantzeskaki, F., Armaganidis, A. & Orfanos, S. E. Immunothrombosis in acute respiratory misery syndrome: cross talks between irritation and coagulation. Respiration 93, 212–225 (2017).
Eltzschig, H. Ok. & Carmeliet, P. Hypoxia and irritation. N. Engl. J. Med. 364, 656–665 (2011).
Middleton, E. A. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory misery syndrome. Blood 136, 1169–1179 (2020).
Zuo, Y. et al. Neutrophil extracellular traps in COVID-19. JCI Perception 5, (2020).
Porto, B. N. & Stein, R. T. Neutrophil extracellular traps in pulmonary ailments: an excessive amount of of an excellent factor? Entrance. Immunol. 7, 311 (2016).
Adib-Conquy, M., Scott-Algara, D., Cavaillon, J.-M. & Souza-Fonseca-Guimaraes, F. TLR-mediated activation of NK cells and their function in bacterial/viral immune responses in mammals. Immunol. Cell Biol. 92, 256–262 (2014).
Topham, N. J. & Hewitt, E. W. Pure killer cell cytotoxicity: How do they pull the set off? Immunology 128, 7–15 (2009).
Borchers, M. T., Harris, N. L., Wesselkamper, S. C., Vitucci, M. & Cosman, D. NKG2D ligands are expressed on careworn human airway epithelial cells. Am. J. Physiol.-Lung Cell. Mole. Physiol. 291, L222–L231 (2006).
Sallard, E., Lescure, F.-X., Yazdanpanah, Y., Mentre, F. & Peiffer-Smadja, N. Kind 1 interferons as a possible remedy in opposition to COVID-19. Antiviral Res. 178, 104791 (2020).
Ke, R., Zitzmann, C., Ho, D. D., Ribeiro, R. & Perelson, A. S. In vivo kinetics of SARS-CoV-2 an infection and its relationship with an individual’s infectiousness. Proc. Natl. Acad. Sci. 118(49), e2111477118 (2021).
Pawelek, Ok. A. et al. Modeling within-host dynamics of influenza virus an infection together with immune responses. PLoS Comput. Biol. 8, e1002588 (2012).
Dhooge, A., Govaerts, W., Kuznetsov, Y. A., Meijer, H. G. E. & Sautois, B. New options of the software program MatCont for bifurcation evaluation of dynamical programs. Math. Comput. Mannequin. Dyn. Syst. 14, 147–175 (2008).
Breda, D., Diekmann, O., Liessi, D. & Scarabel, F. Numerical bifurcation evaluation of a category of nonlinear renewal equations. Electron. J. Qual. Concept Differ. Equ. 65, 1–24 (2016).
De Souza, D. C. et al. Transit and lifespan in neutrophil manufacturing: implications for drug intervention. J. Pharmacokinet Pharmacodyn. 45, 59–77 (2018).
Gonçalves, A. et al. Timing of antiviral remedy initiation is essential to scale back SARS‐CoV‐2 viral load. CPT Pharmacometrics Syst. Pharmacol. 9, 509–514 (2020).
Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, length of viral shedding, and infectiousness: A scientific assessment and meta-analysis. Lancet Microbe 2, E13–E22 (2020).
Huntington, D. E. & Lyrintzis, C. S. Enhancements to and limitations of Latin hypercube sampling. Probab. Eng. Mech. 13, 245–253 (1998).
Ke, R., Zitzmann, C., Ribeiro, R. M. & Perelson, A. S. Kinetics of SARS-CoV-2 an infection within the human higher and decrease respiratory tracts and their relationship with infectiousness. Preprint at MedRxiv https://doi.org/10.1101/2020.09.25.20201772 (2020).
Zhu, N. et al. Morphogenesis and cytopathic impact of SARS-CoV-2 an infection in human airway epithelial cells. Nat. Commun. 11, 1–8 (2020).
Smith, A. M., McCullers, J. A. & Adler, F. R. Mathematical mannequin of a three-stage innate immune response to a pneumococcal lung an infection. J. Theor. Biol. 276, 106–116 (2011).
Pawelek, Ok. A., Dor, D. Jr., Salmeron, C. & Handel, A. Inside-host fashions of excessive and low pathogenic influenza virus infections: The function of macrophages. PLoS ONE 11, e0150568 (2016).
Hervier, B., Russick, J., Cremer, I. & Vieillard, V. NK cells within the human lungs. Entrance. Immunol. 10, 1263 (2019).
Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and regression bushes (Routledge, 2017).
Cutler, A., Cutler, D. R. & Stevens, J. R. Random forests. in Ensemble Machine Studying 157–175 (Springer, 2012).
Zhou, F. et al. Medical course and danger elements for mortality of grownup inpatients with COVID-19 in Wuhan, China: A retrospective cohort examine. The Lancet 395, 1054–1062 (2020).
Wang, Y. et al. Kinetics of viral load and antibody response in relation to COVID-19 severity. J. Clin. Investig. 130, (2020).
Hadjadj, J. et al. Impaired kind I interferon exercise and inflammatory responses in extreme COVID-19 sufferers. Science 369, 718–724 (2020).
Zheng, M. et al. Practical exhaustion of antiviral lymphocytes in COVID-19 sufferers. Cell. Mol. Immunol. 17, 533–535 (2020).
Liao, M. et al. Single-cell panorama of bronchoalveolar immune cells in sufferers with COVID-19. Nat. Med. 26, 842–844 (2020).
Li, Q. et al. Efficacy analysis of early, low-dose, short-term corticosteroids in adults hospitalized with non-severe COVID-19 pneumonia: a retrospective cohort examine. Infect. Illnesses Remedy 9, 823–836 (2020).
Horby, P. et al. Impact of hydroxychloroquine in hospitalized sufferers with COVID-19: preliminary outcomes from a multi-centre, randomized, managed trial. MedRxiv (2020).
Keller, M. J. et al. Impact of systemic glucocorticoids on mortality or mechanical air flow in sufferers with COVID-19. J. Hosp. Med. 15, 489–493 (2020).
Zha, L. et al. Corticosteroid remedy of sufferers with coronavirus illness 2019 (COVID-19). Med. J. Aust. 212, 416–420 (2020).
Tarighi, P. et al. A assessment of potential prompt medication for coronavirus illness (COVID-19) remedy. Eur. J. Pharmacol. 895, 173890 (2021).
Jayk Bernal, A. et al. Molnupiravir for oral remedy of Covid-19 in nonhospitalized sufferers. N. Engl. J. Med. 386(6), 509–520 (2022).
Migueres, M. et al. Affect of the delta variant and vaccination on the SARS-CoV-2 viral load. Viruses 14, 323 (2022).
Li, W.-Y. et al. Discriminant fashions for the prediction of postponed viral shedding time and illness development in COVID-19. BMC Infect. Dis. 22, 1–13 (2022).
Lasso, G. et al. Longitudinally monitored immune biomarkers predict the timing of COVID-19 outcomes. PLoS Comput. Biol. 18, e1009778 (2022).
Subudhi, S. et al. Methods to reduce heterogeneity and optimize scientific trials in Acute Respiratory Misery Syndrome (ARDS): Insights from mathematical modelling. EBioMedicine 75, 103809 (2022).
Chatterjee, B., Singh Sandhu, H. & Dixit, N. M. Modeling recapitulates the heterogeneous outcomes of SARS-CoV-2 an infection and quantifies the variations within the innate immune and CD8 T-cell responses between sufferers experiencing delicate and extreme signs. PLoS Pathog. 18, e1010630 (2022).